f08 — Least-squares and Eigenvalue Problems (LAPACK) f08uec

NAG C Library Function Document
nag_dsbgst (f08uec)

1 Purpose

nag_dsbgst (f08uec) reduces a real symmetric-definite generalized eigenproblem Az = ABz to the standard
form C'y = Ay, where A and B are band matrices, A is a real symmetric matrix, and B has been factorized
by nag_dpbstf (fO8ufc).

2 Specification

void nag_dsbgst (Nag_OrderType order, Nag_VectType vect, Nag_UploType uplo,
Integer n, Integer ka, Integer kb, double ab[], Integer pdab,
const double bb[], Integer pdbb, double x[], Integer pdx, NagError *fail)

3 Description

To reduce the real symmetric-definite generalized eigenproblem Az = ABz to the standard form Cy = Ay,
where A, B and C are banded, this function must be preceded by a call to nag_dpbstf (f08ufc) which

computes the split Cholesky factorization of the positive-definite matrix B: B = S7S. The split Cholesky
factorization, compared with the ordinary Cholesky factorization, allows the work to be approximately
halved.

This function overwrites A with C' = X7 AX, where X = S_lQ and @ is a orthogonal matrix chosen
(implicitly) to preserve the bandwidth of A. The function also has an option to allow the accumulation of
X, and then, if z is an eigenvector of C, Xz is an eigenvector of the original system.

4 References

Crawford C R (1973) Reduction of a band-symmetric generalized eigenvalue problem Comm. ACM 16
41-44

Kaufman L (1984) Banded eigenvalue solvers on vector machines ACM Trans. Math. Software 10 73-86

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: vect — Nag VectType Input
On entry: indicates whether X is to be returned as follows:
if vect = Nag DoNotForm, X is not returned;
if vect = Nag FormX, X is returned.
Constraint: vect = Nag_DoNotForm or Nag_FormX.

3: uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored as follows:

[NP3645/7] f08uec. 1

fO08uec NAG C Library Manual

if uplo = Nag_Upper, the upper triangular part of A is stored;
if uplo = Nag_Lower, the lower triangular part of A is stored.

Constraint: uplo = Nag_Upper or Nag_Lower.

4: n — Integer Input
On entry: n, the order of the matrices A and B.

Constraint: n > 0.

5: ka — Integer Input

On entry: k4, the number of super-diagonals of the matrix A if uplo = Nag_Upper, or the number
of sub-diagonals if uplo = Nag_Lower.

Constraint. ka > 0.

6: kb — Integer Input

On entry: kg, the number of super-diagonals of the matrix B if uplo = Nag_Upper, or the number
of sub-diagonals if uplo = Nag_Lower.

Constraint: ka > kb > 0.

7: ab[dim] — double Input/Output
Note: the dimension, dim, of the array ab must be at least max(1, pdab x n).

On entry: the n by n symmetric band matrix A. This is stored as a notional two-dimensional array
with row elements or column elements stored contiguously. The storage of elements a;; depends on
the order and uplo parameters as follows:

if order = Nag_ColMajor and uplo = Nag_Upper,
a;; is stored in ab[ky +i — j+ (j— 1) x pdab], for i = 1,...,n and
J=rt,...,min(n,i+ ky);

if order = Nag_ColMajor and uplo = Nag_Lower,
a;; is stored in ab[i — j+ (j — 1) x pdab], for i = 1,...,n and
j=max(1,i — ky),...,%

if order = Nag_RowMajor and uplo = Nag_Upper,
a;; is stored in ab[j —i + (i — 1) x pdab], for i = 1,...,n and
j=1t,...,min(n,i+ ky);

if order = Nag_RowMajor and uplo = Nag_Lower,
a;; is stored in ablky +j — i+ (i — 1) x pdab], for i =1,...,n and
j=max(1,i —ky),...,1.

On exit: the upper or lower triangle of A is overwritten by the corresponding upper or lower triangle
of C' as specified by uplo.
8: pdab — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint. pdab > ka + 1.

9: bb[dim] — const double Input
Note: the dimension, dim, of the array bb must be at least max(1, pdbb x n).

On entry: the banded split Cholesky factor of B as specified by uplo, n and kb and returned by
nag_dpbstf (f08ufc).

f08uec.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) fO08uec

10:

11:

12:

13:

6

pdbb — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix in the array bb.

Constraint: pdbb > kb + 1.

x[dim] — double Output

Note: the dimension, dim, of the array x must be at least
max(1,pdx x n) when vect = Nag FormX;
1 when vect = Nag DoNotForm.

If order = Nag_ColMajor, the (7, j)th element of the matrix X is stored in x[(j — 1) x pdx + 4 — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + j — 1].

On exit: the n by n matrix X = S7'Q, if vect = Nag_FormX.

x is not referenced if vect = Nag_DoNotForm.

pdx — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:
if vect = Nag_FormX, pdx > max(1,n);
if vect = Nag_DoNotForm, pdx > 1.
fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, ka = (value).
Constraint: ka > 0.

On entry, pdab = (value).
Constraint: pdab > 0.

On entry, pdbb = (value).
Constraint: pdbb > 0.

On entry, pdx = (value).
Constraint: pdx > 0.

NE_INT 2

On entry, ka = (value), kb = (value).
Constraint: ka > kb > 0.

On entry, pdab = (value), ka = (value).
Constraint: pdab > ka + 1.

On entry, pdbb = (value), kb = (value).
Constraint: pdbb > kb + 1.

[NP3645/7] f08uec.3

fO08uec NAG C Library Manual

NE_ENUM_INT 2

On entry, vect = (value), n = (value), pdx = (value).
Constraint: if vect = Nag_FormX, pdx > max(1,n);
if vect = Nag DoNotForm, pdx > 1.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Forming the reduced matrix C' is a stable procedure. However it involves implicit multiplication by B~".
When the function is used as a step in the computation of eigenvalues and eigenvectors of the original
problem, there may be a significant loss of accuracy if B is ill-conditioned with respect to inversion.

8 Further Comments

The total number of floating-point operations is approximately 6n°kp, when vect = Nag_DoNotForm,
assuming n >> k4, kp; there are an additional (3/2)n>(kp/k4) operations when vect = Nag_FormX.

The complex analogue of this function is nag_zhbgst (f08usc).

9 Example
To compute all the eigenvalues of Az = ABz, where
024 039 042 0.00 2.07 095 0.00 0.00
A 039 —0.11 0.79 0.63 and B — 0.95 1.69 —-0.29 0.00
1042 079 -025 048 1 000 —029 065 -0.33
0.00 063 048 —0.03 0.00 0.00 -0.33 1.17

Here A is symmetric, B is symmetric positive-definite, and A and B are treated as band matrices. B must
first be factorized by nag_dpbstf (fO8ufc). The program calls nag_dsbgst (f08uec) to reduce the problem to
the standard form C'y = Ay, then nag dsbtrd (f08hec) to reduce C' to tridiagonal form, and nag_dsterf
(f08jfc) to compute the eigenvalues.

9.1 Program Text

/* nag_dsbgst (f08uec) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)

{
/* Scalars */

f08uec.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

Integer i, j, k1, k2, ka, kb, n, pdab, pdbb, pdx, d_len, e_len;

Integer exit_status=0;
NagError fail;
Nag_UploType
Nag_OrderType
/* Arrays */
char uplo_char[2];

double *ab=0, *bb=0, *d=0, *e=0, *x=0;

uplo;
order;

#ifdef NAG_COLUMN_MAJOR
#define AB_UPPER(I,J) abl[(J-1
#define AB_LOWER(I,J) abl(J-1
#define BB_UPPER(I,J) bb[(J-1
#define BB_LOWER(I,J) bb[(J-1
order = Nag_ColMajor;
#else
#define AB_UPPER(I,J)
#define AB_LOWER(I,J) ab
#define BB_UPPER(I,J)
#define BB_LOWER(I,J) bb
order = Nag_RowMajor;
#endif

I_

I_

J_

J_

INIT_FAIL(fail);

kl1 +I-J- 1]

J1

+
+

*xpdbb + k2 + I - J - 1]
+

J1]

I]

1]

+

*pdab + k1 + J - I - 1]
+
+

k2 + J-1I - 1]

Vprintf ("f08uec Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("$*["\n] ");

Vscanf ("%$1d%1d%1d%s*["\n] ", &n, &ka, &kb);

pdab = ka + 1;
pdbb = kb + 1;
pdx = n;

d_len = n;
e_len = n-1;

/* Allocate memory */

if (!(ab = NAG_ALLOC(pdab * n, double
! (bb = NAG_ALLOC(pdbb #* n, double
1 (d = NAG_ALLOC(d_1len, double)) |
(e |
1 (x)

))
))
|
|

NAG_ALLOC(e_1len, double))
NAG_ALLOC(n * n, double))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

3

/* Read whether Upper or Lower part of A is stored =*/

Vscanf (" ' %1s ’'%*["\n] ", uplo_char);

if (*(unsigned char #*)uplo_char == 'L’)
uplo = Nag_Lower;

else if (*(unsigned char #*)uplo_char ==
uplo = Nag_Upper;

else
{
Vprintf ("Unrecognised character for
exit_status = -1;
goto END;

}
/* Read A and B from data file =*/
k1l = ka + 1;

Nag_UploType type\n");

k2 = kb + 1;
if (uplo == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (j = i; j <= MIN(i+ka,n); ++3j)
Vscanf ("$1f", &AB_UPPER(i,j));
¥
Vscanf ("sx[*\n] ");
}
else

[NP3645/7]

f08uec

fO8uec.5

fO08uec
{
for (i = 1; i <= n; ++1i)
{
for (j = MAX(1l,i-ka); j <= 1i; ++3)
Vscanf ("%1f", &AB_LOWER(i,j));
}
Vscanf ("$x[*\n] ");
}
if (uplo == Nag_Upper)
{
for (i = 1; 1 <= n; ++1i)
{
for (j = i; j <= MIN(i+kb,n); ++j)
Vscanf ("%1f", &BB_UPPER(i,j));
¥
Vscanf("%*[A\n] n);
¥
else
{
for (i = 1; i <= n; ++1i)
{
for (j = MAX(1l,i-kb); j <= i; ++3)
Vscanf ("$1f", &BB_LOWER(i,3j));
}
Vscanf ("s*[*\n] ");
}

/* Compute the split Cholesky factorization of B */
fO8ufc(order, uplo, n, kb, bb, pdbb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8ufc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Reduce the problem to standard form C*y = lambda*y, */
/* storing the result in A */

fO8uec(order, Nag_DoNotForm, uplo, n, ka, kb, ab, pdab, bb, pdbb,

x, pdx, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8uec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Reduce C to tridiagonal form T = (Q**T)*C*Q */
fO08hec(order, Nag_DoNotForm, uplo, n, ka, ab, pdab, 4, e,
x, pdx, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8hec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Calculate the eigenvalues of T (same as C) */
f08jfc(n, d, e, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f£08jfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print eigenvalues */
Vprintf (" Eigenvalues\n");
for (i = 0; i < n; ++1i)
Vprintf (" %8.41f",d[i]);
Vprintf ("\n") ;

END:
if (ab) NAG_FREE (ab);
if (bb) NAG_FREE (bb) ;
if (d) NAG_FREE(4d);
if (e) NAG_FREE (e);

NAG C Library Manual

[NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

if (x) NAG_FREE (x) ;
return exit_status;

}

9.2 Program Data

fO08uec Example Program Data

4 2 1

IL’

0.24

0.39 -0.

0.42 0.

0

2.07

0.95 1.
-0

11
79

.63

69

.29

-0.25
0.48

0.65
-0.33

9.3 Program Results

fO08uec Example Program Results

Eigenvalues
-0.6401

-0.8305

-0.03

0.0992

:Values of N, KA and KB
:Value of UPLO

:End of matrix A

:End of matrix B

1.8525

f08uec

[NP3645/7]

fO8uec.7 (last)

	f08uec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	vect
	uplo
	n
	ka
	kb
	ab
	pdab
	bb
	pdbb
	x
	pdx
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

